Resposta forçada do circuito RL

A resposta forçada de um circuito RL é a resposta a presença de uma fonte, com condições iniciais nulas.

Veremos como determinar a equação diferencial que representa o circuito RL com fonte e, a partir dela, obter a resposta forçada em conjunto com a resposta natural, ou seja, obteremos a resposta completa do circuito.

Circuito RL com fonte
Circuito RL com fonte

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Resposta forçada do circuito RL”

Resposta forçada do circuito RC

A resposta forçada de um circuito RC é a resposta a presença de uma fonte, com condições iniciais nulas.

Veremos como determinar a equação diferencial que representa o circuito RC com fonte e, a partir dela, obter a resposta forçada em conjunto com a resposta natural, ou seja, obteremos a resposta completa do circuito.

Circuito RC com fonte
Circuito RC com fonte

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Resposta forçada do circuito RC”

Funções singulares

Funções singulares são funções que são descontínuas ou tem derivadas descontínuas.

Estas funções são muito úteis para realizar análise matemática de circuitos elétricos e são frequentemente utilizadas em conjunto com outras funções para formar funções mais complexas.

A seguir vemos as funções singulares mais importantes: degrau, impulso, rampa.

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Funções singulares”

Resposta natural do circuito RL

A resposta natural de um circuito RL é a resposta às condições iniciais, sem que haja uma fonte de alimentação no circuito.

Veremos como determinar a equação diferencial que representa o circuito RL sem fonte e, a partir dela, obter a resposta natural.

Circuito RL sem fonte
Circuito RL sem fonte

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Resposta natural do circuito RL”

Resposta natural do circuito RC

A resposta natural de um circuito RC é a resposta às condições iniciais, sem que haja uma fonte de alimentação no circuito.

Veremos como determinar a equação diferencial que representa o circuito RC sem fonte e, a partir dela, obter a resposta natural.

Circuito RC sem fonte
Circuito RC sem fonte

Veja a lista de posts do Curso Circuitos Elétricos em sequência.

Resposta natural do um circuito RC

A resposta natural de um circuito é a resposta a suas condições iniciais, sem a existência de fontes no circuito.

Para determinar a resposta natural de um circuito RC basta encontrar duas informações:

  1. A tensão inicial do capacitor V0=v(0); e
  2. A constante de tempo τ=RC.

A resposta natural do circuito RC, para t>0, será a seguinte.

v(t) = V0e-t/τ Continue lendo “Resposta natural do circuito RC”

Amplificador diferenciador

Além de amplificadores, somadores e subtratores, AMPOPs também podem realizar outras operações como realizar a derivada de um sinal com um amplificador diferenciador.

Neste post vemos como criar um amplificador diferenciador com AMPOP, resolver seu circuito elétrico e determinar seu ganho.

Como vemos na figura abaixo, para criar um amplificador diferenciador basta montar um amplificador inversor e substituir o resistor de entrada R1 por um capacitor.

Amplificador diferenciador (derivada) com AMPOP
Amplificador diferenciador (derivada) com AMPOP

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Amplificador diferenciador”

Amplificador integrador

Além de amplificadores, somadores e subtratores, AMPOPs também podem realizar outras operações como realizar a integral de um sinal com um amplificador integrador.

Neste post vemos como criar um amplificador integrador com AMPOP, resolver seu circuito elétrico e determinar seu ganho.

Como vemos na figura abaixo, para criar um amplificador integrador basta montar um amplificador inversor e substituir o resistor de realimentação RF por um capacitor.

Amplificador integrador com AMPOP
Amplificador integrador com AMPOP

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Amplificador integrador”

Indutância equivalente série e paralelo

Conhecendo a equação que relaciona a tensão e corrente em um indutor (v=L di/dt) podemos calcular a indutância equivalente de indutores em série e em paralelo.

De forma análoga ao que fizemos com resistores, para encontrar a indutância equivalente de uma associação de indutores precisamos identificar um valor de indutância que, do ponto de vista do circuito externo, é idêntico aos indutores associados.

Indutância equivalente de indutores em série
Indutância equivalente de indutores em série

Indutância equivalente de indutores em paralelo
Indutância equivalente de indutores em paralelo

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Indutância equivalente série e paralelo”

Indutores

Indutores é um dos três elementos passivos mais importantes de circuitos elétricos, sendo eles resistores, capacitores e indutores.

Neste post vemos as principais características dos indutores, como a construção de um indutor, a relação de tensão por corrente, a energia armazenada e outras.

Construção de um indutor
Construção de um indutor

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Indutores”

Capacitância equivalente série e paralelo

Conhecendo a equação que relaciona a carga e a tensão em um capacitor (q=CV) podemos calcular a capacitância equivalente de capacitores em série e em paralelo.

De forma análoga ao que fizemos com resistores, para encontrar a capacitância equivalente de uma associação de capacitores precisamos identificar um valor de capacitância que, do ponto de vista do circuito externo, é idêntico aos capacitores associados.

Capacitância equivalente de capacitores em paralelo
Capacitância equivalente de capacitores em paralelo

Capacitância equivalente de capacitores em série
Capacitância equivalente de capacitores em série

Veja a lista de posts do Curso Circuitos Elétricos em sequência. Continue lendo “Capacitância equivalente série e paralelo”